Mary Bird Perkins Cancer Center’s
CAMD Cancer Therapy Research Program

Kenneth R Hogstrom, PhD, PI
Chief of Physics
Mary Bird Perkins Cancer Center
Baton Rouge, LA

Professor and Director
Medical Physics and Health Physics Program
Dr. Charles M. Smith Chair of Medical Physics
Department of Physics and Astronomy
Louisiana State University
Why High-Z Enhanced Radiation Therapy?

• Current radiation therapy practice targets a volume of tissue (PTV) quite accurately:
 – Intensity modulated radiation therapy (IMRT)
 – Proton therapy & heavy ion therapy
 – Image guided radiation therapy (IGRT)
 – Respiratory gated radiotherapy
 – Adaptive radiotherapy (Intrafraction and interfraction changes)

• Can we improve radiation therapy by targeting cancer at the cellular level?
Current Study
Properties of Iododeoxyuridine (IUdR)

- IUdR replaces thymidine in DNA during cell division.

- X-ray capture by I in IUdR results in tremendous local energy deposition in the DNA, enhancing the effectiveness to radiation dose.

Thymidine

IUdR

Kassis 2005

β⁻

Auger e⁻
CHO Cell Survival vs Dose to Water

- 16.6% thymidine replacement
- SER~2.7
- SER~4.3

- 12.0% thymidine replacement
- SER~2.3
- SER~3.1

- 9.2% thymidine replacement
- SER~1.6
- SER~2.1

- 0.001
- 0.01
- 0.1
- 1

- 0.0
- 0.5
- 1.0
- 1.5
- 2.0
- 2.5
- 3.0
- 3.5
- 4.0
- 4.5
- 5.0
- 5.5
- 6.0
- 6.5
- 7.0
- 7.5

- 35 keV + IUdR
- 4 MV + IUdR
- No IUdR
High-Z Enhanced Radiation Therapy
Requisites

• **Drug Properties**
 – Contains high-Z atom(s)
 – Preferentially targets cancer cells
 – Adequate concentration achievable (non-toxic)

• **Photoactivation**
 – Monochromatic X-ray Source ($E_\gamma > E_{K\text{-edge}}$)

• **Optimal Energy**
 – Treatment site
 – Drug location with respect to cell
 • DNA (IUdR, cis-platinum)
 • Intra-nuclear (oxine)
 • Intra-cellular or cell wall (antibodies)
 • Inter-cellular (iodine contrast, Au nanoparticles)
High-Z Enhanced Radiation Therapy with Monochromatic X-rays: Project Goals

• **Goal 1: Understand the Mechanism for IUdR Sensitization**
 – Measure cell survival curves as a function of %IUdR (9% & 18%) and energy (25-70 keV and 6 MV).
 – Develop cell survival model(s) as a function of E and %IUdR.

• **Goal 2: Predict cell survival in a patient-like phantom**
 – Use a Monte Carlo (MC) model for calculating differential dose in a cylindrical phantom for rotational therapy.
 – Develop models for calculating dose equivalent using MC-calculated differential dose.
 – Determine and verify optimal energies for rotational therapy for various planning target volumes by comparing measured cell survival curves with models.
MPBCC-LSU DOD Grant
High-Z Enhanced Radiation Therapy with Monochromatic X-rays: **Project Goals**

- **Goal 3: Construct User-Friendly Medical Radiology Beamline**
 - Specify, acquire, and install biomedical beamline components, hutch, and experimental apparatus on new multi-pole wiggler beamline.

- **Goal 4: Develop Treatment Planning System for High-Z Therapy**
 - Develop a treatment planning model for high-Z enhanced rotational delivery.
 - Integrate the model with a commercial treatment planning system and validate.

- **Goal 5: Develop Feedback for High-Z Drug Development**
 - Investigate dose to DNA versus monochromatic energy and cellular location.
 - Determine minimal drug concentrations and optimal beam E required for sensitization ratio of 2 as a function of tumor site and cellular location.